28 research outputs found

    Reinforcement learning-based trust and reputation model for spectrum leasing in cognitive radio networks

    Get PDF
    Cognitive Radio (CR), which is the next generation wireless communication system, enables unlicensed users or Secondary Users (SUs) to exploit underutilized spectrum (called white spaces) owned by the licensed users or Primary Users(PUs) so that bandwidth availability improves at the SUs, which helps to improve the overall spectrum utilization. Collaboration, which has been adopted in various schemes such distributed channel sensing and channel access, is an intrinsic characteristic of CR to improve network performance. However, the requirement to collaborate has inevitably open doors to various forms of attacks by malicious SUs, and this can be addressed using Trust and Reputation Management (TRM). Generally speaking, TRM detects malicious SUs including honest SUs that turn malicious. To achieve a more efficient detection, we advocate the use of Reinforcement Learning (RL), which is known to be flexible and adaptable to the changes in operating environment in order to achieve optimal network performance. Its ability to learn and re-learn throughout the duration of its existence provides intelligence to the proposed TRM model, and so the focus on RL-based TRM model in this paper. Our preliminary results show that the detection performance of RLbased TRM model has an improvement of 15% over the traditional TRM in a centralized cognitive radio network. The investigation in the paper serves as an important foundation for future work in this research field

    Trust and reputation management for securing collaboration in 5G access networks: the road ahead

    Get PDF
    Trust represents the belief or perception of an entity, such as a mobile device or a node, in the extent to which future actions and reactions are appropriate in a collaborative relationship. Reputation represents the network-wide belief or perception of the trustworthiness of an entity. Each entity computes and assigns a trust or reputation value, which increases and decreases with the appropriateness of actions and reactions, to another entity in order to ensure a healthy collaborative relationship. Trust and reputation management (TRM) has been investigated to improve the security of traditional networks, particularly the access networks. In 5G, the access networks are multi-hop networks formed by entities which may not be trustable, and so such networks are prone to attacks, such as Sybil and crude attacks. TRM addresses such attacks to enhance the overall network performance, including reliability, scalability, and stability. Nevertheless, the investigation of TRM in 5G, which is the next-generation wireless networks, is still at its infancy. TRM must cater for the characteristics of 5G. Firstly, ultra-densification due to the exponential growth of mobile users and data traffic. Secondly, high heterogeneity due to the different characteristics of mobile users, such as different transmission characteristics (e.g., different transmission power) and different user equipment (e.g., laptops and smartphones). Thirdly, high variability due to the dynamicity of the entitiesā€™ behaviors and operating environment. TRM must also cater for the core features of 5G (e.g., millimeter wave transmission, and device-to-device communication) and the core technologies of 5G (e.g., massive MIMO and beamforming, and network virtualization). In this paper, a review of TRM schemes in 5G and traditional networks, which can be leveraged to 5G, is presented. We also provide an insight on some of the important open issues and vulnerabilities in 5G networks that can be resolved using a TRM framework

    Application of reinforcement learning for security enhancement in cognitive radio networks

    Get PDF
    Cognitive radio network (CRN) enables unlicensed users (or secondary users, SUs) to sense for and opportunistically operate in underutilized licensed channels, which are owned by the licensed users (or primary users, PUs). Cognitive radio network (CRN) has been regarded as the next-generation wireless network centered on the application of artificial intelligence, which helps the SUs to learn about, as well as to adaptively and dynamically reconfigure its operating parameters, including the sensing and transmission channels, for network performance enhancement. This motivates the use of artificial intelligence to enhance security schemes for CRNs. Provisioning security in CRNs is challenging since existing techniques, such as entity authentication, are not feasible in the dynamic environment that CRN presents since they require pre-registration. In addition these techniques cannot prevent an authenticated node from acting maliciously. In this article, we advocate the use of reinforcement learning (RL) to achieve optimal or near-optimal solutions for security enhancement through the detection of various malicious nodes and their attacks in CRNs. RL, which is an artificial intelligence technique, has the ability to learn new attacks and to detect previously learned ones. RL has been perceived as a promising approach to enhance the overall security aspect of CRNs. RL, which has been applied to address the dynamic aspect of security schemes in other wireless networks, such as wireless sensor networks and wireless mesh networks can be leveraged to design security schemes in CRNs. We believe that these RL solutions will complement and enhance existing security solutions applied to CRN To the best of our knowledge, this is the first survey article that focuses on the use of RL-based techniques for security enhancement in CRNs

    Cognition-inspired 5G cellular networks: a review and the road ahead

    Get PDF
    Despite the evolution of cellular networks, spectrum scarcity and the lack of intelligent and autonomous capabilities remain a cause for concern. These problems have resulted in low network capacity, high signaling overhead, inefficient data forwarding, and low scalability, which are expected to persist as the stumbling blocks to deploy, support and scale next-generation applications, including smart city and virtual reality. Fifth-generation (5G) cellular networking, along with its salient operational characteristics - including the cognitive and cooperative capabilities, network virtualization, and traffic offload - can address these limitations to cater to future scenarios characterized by highly heterogeneous, ultra-dense, and highly variable environments. Cognitive radio (CR) and cognition cycle (CC) are key enabling technologies for 5G. CR enables nodes to explore and use underutilized licensed channels; while CC has been embedded in CR nodes to learn new knowledge and adapt to network dynamics. CR and CC have brought advantages to a cognition-inspired 5G cellular network, including addressing the spectrum scarcity problem, promoting interoperation among heterogeneous entities, and providing intelligence and autonomous capabilities to support 5G core operations, such as smart beamforming. In this paper, we present the attributes of 5G and existing state of the art focusing on how CR and CC have been adopted in 5G to provide spectral efficiency, energy efficiency, improved quality of service and experience, and cost efficiency. This main contribution of this paper is to complement recent work by focusing on the networking aspect of CR and CC applied to 5G due to the urgent need to investigate, as well as to further enhance, CR and CC as core mechanisms to support 5G. This paper is aspired to establish a foundation and to spark new research interest in this topic. Open research opportunities and platform implementation are also presented to stimulate new research initiatives in this exciting area

    A Reinforcement Learning-based Trust Model for Cluster Size Adjustment Scheme in Distributed Cognitive Radio Networks

    Get PDF
    Cognitive radio enables secondary users (SUs) to explore and exploit the underutilized licensed channels (or white spaces) owned by the primary users. To improve the network scalability, the SUs are organized into clusters. This article proposes a novel artificial intelligence based trust model approach that uses reinforcement learning (RL) to improve traditional budget-based cluster size adjustment schemes. The RL-based trust model enables the clusterhead to observe and learn about the behaviors of its SU member nodes, and revoke the membership of malicious SUs in order to ameliorate the effects of intelligent and collaborative attacks, while adjusting the cluster size dynamically according to the availability of white spaces. The malicious SUs launch attacks on clusterheads causing the cluster size to become inappropriately sized while learning to remain undetected. In any attack and defense scenario, both the attackers and the clusterhead adopt RL approaches. Simulation results have shown that the single-agent RL (SARL) attackers have caused the cluster size to reduce significantly; while the SARL clusterhead has slightly helped increase its cluster size, and this motivates a rule-based approach to efficiently counterattack. Multi-agent RL attacks have shown to be less effective in an operating environment that is dynamic

    Harnessing ANN for a secure environment

    No full text
    This paper explores recent works in the application of artificial neural network (ANN) for security ? namely, network security via intrusion detection systems, and authentication systems. This paper highlights a variety of approaches that have been adopted in these two distinct areas of study. In the application of intrusion detection systems, ANN has been found to be more effective in detecting known attacks over rule-based system; however, only moderate success has been achieved in detecting unknown attacks. For authentication systems, the use of ANN has evolved considerably with hybrid models being developed in recent years. Hybrid ANN, combining different variants of ANN or combining ANN with non-AI techniques, has yielded encouraging results in lowering training time and increasing accuracy. Results suggest that the future of ANN in the deployment of a secure environment may lie in the development of hybrid models that are responsive for real-world applications

    A Security-Enhanced Cluster Size Adjustment Scheme for Cognitive Radio Networks

    Get PDF
    Cognitive radio network (CRN) is the next generation wireless network that allows unlicensed users [secondary users (SUs)] to explore and use the underutilised licensed channels (white spaces) owned by licensed users (primary users). The purpose is to increase the spectrum utilization for enhanced network performance. Clustering segregates SUs in a CRN into logical groups (clusters) with each consisting of a leader (cluster head) and member nodes. A budget-based cluster size adjustment scheme is applied to enable each cluster to adjust its number of member nodes in its cluster based on the availability of white spaces in order to improve network scalability. However, cluster size adjustment is prone to attacks by malicious SUs that launch random and intelligent attacks. Hence, we incorporate an artificial intelligence approach called reinforcement learning (RL) into a trust model to countermeasure the random and intelligent attacks. The simulation results show that RL-based trust model increases the utilization of white spaces and cluster size to improve network scalability and enhance network performance despite the presence of RL-based intelligent attacks

    College Studentsā€™ Perception and Concerns regarding Online Examination amid COVID-19

    No full text
    Growing concerns about online examinations have led to various investigations of techniques for improvement. With most higher education institutions shifting to online learning and examination amid COVID-19, these concerns, including the academic dishonesty, validity, reliability, and anxiety of online examination, are more critical than ever. This paper presents the outcomes of the survey to elicit the perceptions of undergraduate students from two universities in South Korea and Malaysia towards undertaking online exams and the associated concerns. Additionally, the study explores the potential of artificial intelligence (AI) in addressing these concerns. There are three main research questions: 1) How has AI been adopted to tackle the four main concerns in online exams? 2) What are the studentsā€™ perceptions regarding these concerns? Are there any differences between South Korean and Malaysian students? 3) What is the extent of the stress level when webcam proctoring and timers are implemented during online exams? The survey results show that both South Korean and Malaysian students agree that online exams make cheating more accessible than in-person exams. They also suggest that selecting questions randomly from a question bank could discourage cheating. Moreover, the study highlights that both groups of students experience moderate stress levels when webcam proctoring is used over Zoom during online exams, and they experience a high-stress level when timers are set for each question

    A Hybrid Route Selection Scheme for 5G Network Scenarios: An Experimental Approach

    No full text
    With the significant rise in demand for network utilization, such as data transmission and device-to-device (D2D) communication, fifth-generation (5G) networks have been proposed to fill the demand. Deploying 5G enhances the utilization of network channels and allows users to exploit licensed channels in the absence of primary users (PUs). In this paper, a hybrid route selection mechanism is proposed, and it allows the central controller (CC) to evaluate the route map proactively in a centralized manner for source nodes. In contrast, source nodes are enabled to make their own decisions reactively and select a route in a distributed manner. D2D communication is preferred, which helps networks to offload traffic from the control plane to the data plane. In addition to the theoretical analysis, a real testbed was set up for the proof of concept; it was composed of eleven nodes with independent processing units. Experiment results showed improvements in traffic offloading, higher utilization of network channels, and a lower interference level between primary and secondary users. Packet delivery ratio and end-to-end delay were affected due to a higher number of intermediate nodes and the dynamicity of PU activities
    corecore